Brain Pickings

The Hummingbird Effect: How Galileo Invented Time and Gave Rise to the Modern Tyranny of the Clock

By:

How the invisible hand of the clock powered the Industrial Revolution and sparked the Information Age.

While we appreciate it in the abstract, few of us pause to grasp the miracles of modern life, from artificial light to air conditioning, as Steven Johnson puts it in the excellent How We Got to Now: Six Innovations That Made the Modern World (public library), “how amazing it is that we drink water from a tap and never once worry about dying forty-eight hours later from cholera.” Understanding how these everyday marvels first came to be, then came to be taken for granted, not only allows us to see our familiar world with new eyes — something we are wired not to do — but also lets us appreciate the remarkable creative lineage behind even the most mundane of technologies underpinning modern life. Johnson writes in the introduction:

Our lives are surrounded and supported by a whole class of objects that are enchanted with the ideas and creativity of thousands of people who came before us: inventors and hobbyists and reformers who steadily hacked away at the problem of making artificial light or clean drinking water so that we can enjoy those luxuries today without a second thought, without even thinking of them as luxuries in the first place… We are indebted to those people every bit as much as, if not more than, we are to the kings and conquerors and magnates of traditional history.

Johnson points out that, much like the evolution of bees gave flowers their colors and the evolution of pollen altered the design of the hummingbird’s wings, the most remarkable thing about innovations is the way they precipitate unanticipated changes that reverberate far and wide beyond the field or discipline or problem at the epicenter of the particular innovation. Pointing to the Gutenberg press — itself already an example of the combinatorial nature of creative breakthroughs — Johnson writes:

Johannes Gutenberg’s printing press created a surge in demand for spectacles, as the new practice of reading made Europeans across the continent suddenly realize that they were farsighted; the market demand for spectacles encouraged a growing number of people to produce and experiment with lenses, which led to the invention of the microscope, which shortly thereafter enabled us to perceive that our bodies were made up of microscopic cells. You wouldn’t think that printing technology would have anything to do with the expansion of our vision down to the cellular scale, just as you wouldn’t have thought that the evolution of pollen would alter the design of a hummingbird’s wing. But that is the way change happens.

Johnson terms these complex chains of influences the “hummingbird effect,” named after the famous “butterfly effect” concept from chaos theory — Edward Lorenz’s famous metaphor for the idea that a change as imperceptible as the flap of a butterfly’s wings can result in an effect as grand as a hurricane far away several weeks later — but different in a fundamental way:

The extraordinary (and unsettling) property of the butterfly effect is that it involves a virtually unknowable chain of causality; you can’t map the link between the air molecules bouncing around the butterfly and the storm system brewing in the Atlantic. They may be connected, because everything is connected on some level, but it is beyond our capacity to parse those connections or, even harder, to predict them in advance. But something very different is at work with the flower and the hummingbird: while they are very different organisms, with very different needs and aptitudes, not to mention basic biological systems, the flower clearly influences the hummingbird’s physiognomy in direct, intelligible ways.

Under the “hummingbird effect,” an innovation in one field can trigger unexpected breakthroughs in wholly different domains, but the traces of those original influences often remain obscured. Illuminating them allows us to grasp the many dimensions of change, its complex and often unintended consequences, the multiple scales of experience that have always defined human history and, perhaps above all, to lend much-needed dimension to the flat myth of genius. Playing off the sentiment at the heart of Richard Feynman’s famous ode to a flower, Johnson writes:

History happens on the level of atoms, the level of planetary climate change, and all the levels in between. If we are trying to get the story right, we need an interpretative approach that can do justice to all those different levels.

[...]

There is something undeniably appealing about the story of a great inventor or scientist — Galileo and his telescope, for instance — working his or her way toward a transformative idea. But there is another, deeper story that can be told as well: how the ability to make lenses also depended on the unique quantum mechanical properties of silicon dioxide and on the fall of Constantinople. Telling the story from that long-zoom perspective doesn’t subtract from the traditional account focused on Galileo’s genius. It only adds.

Nundinal calendar, Rome. The ancient Etruscans developed an eight-day market week, known as the nundinal cycle, around the eighth or seventh century BC.

In fact, of the six such widely reverberating innovations that Johnson highlights, the one sparked by Galileo is the most fascinating because it captures so many dimensions of our eternal and eternally bedeviled relationship with time — our astoundingly elastic perception of it, the way it dictates our internal rhythms and our creative routines, its role in free will, and much more. Johnson tells an absorbing origin story the way only he can:

Legend has it that in 1583, a nineteen-year-old student at the University of Pisa attended prayers at the cathedral and, while daydreaming in the pews, noticed one of the altar lamps swaying back and forth. While his companions dutifully recited the Nicene Creed around him, the student became almost hypnotized by the lamp’s regular motion. No matter how large the arc, the lamp appeared to take the same amount of time to swing back and forth. As the arc decreased in length, the speed of the lamp decreased as well. To confirm his observations, the student measured the lamp’s swing against the only reliable clock he could find: his own pulse.

The swinging altar lamp inside Duomo of Pisa

That teenager, of course, was Galileo. Johnson explains the significance of that mythic moment:

That Galileo was daydreaming about time and rhythm shouldn’t surprise us: his father was a music theorist and played the lute. In the middle of the sixteenth century, playing music would have been one of the most temporally precise activities in everyday culture. (The musical term “tempo” comes from the Italian word for time.) But machines that could keep a reliable beat didn’t exist in Galileo’s age; the metronome wouldn’t be invented for another few centuries. So watching the altar lamp sway back and forth with such regularity planted the seed of an idea in Galileo’s young mind. As is so often the case, however, it would take decades before the seed would blossom into something useful.

'Portrait of Galileo Galilei' by Justus Sustermans, 1636

Indeed, Galileo’s mass experience stands as a spectacular testament to the usefulness of useless knowledge. Over the next two decades, he busied himself with becoming a professor of mathematics, tinkering with telescopes, and, as Johnson aptly puts it, “more or less inventing modern science” (and withstanding the pushback). And yet he kept the image of that swinging altar lamp on the back-burner of his mind. Eventually, as he grew increasingly enchanted with motion and dynamics, he decided to build a pendulum that would simulate what he had observed that distant day at the cathedral. His discovery confirmed his intuition — what determined the time it took the pendulum to swing wasn’t the size of the arc or the weight of the object, but merely the length of the string. Johnson cites Galileo’s excited letter to his peer Giovanni Battista Baliani:

The marvelous property of the pendulum is that it makes all its vibrations, large or small, in equal times.

Galileo's sketches for the pendulum clock

In our present age of productivity, when our entire lives depend on accurate timekeeping — from our daily routines to our conference calls to financial markets and flights — it’s hard to imagine just how groundbreaking and downright miraculous the concept of measuring time accurately was in 16th-century Italy. And yet that’s precisely what it was — Italian towns then, Johnson points out, had clunky mechanical clocks that reflected a loose estimation of time, often losing twenty minutes a day, and had to be constantly corrected by sundial readings. Johnson writes:

The state of the art in timekeeping technology was challenged by just staying accurate on the scale of days. The idea of a timepiece that might be accurate to the second was preposterous.

Preposterous, and seemingly unnecessary. Just like Frederic Tudor’s ice trade, it was an innovation that had no natural market. You couldn’t keep accurate time in the middle of the sixteenth century, but no one really noticed, because there was no need for split-second accuracy. There were no buses to catch, or TV shows to watch, or conference calls to join. If you knew roughly what hour of the day it was, you could get by just fine.

Discus chronologicus, early 1720s, from Cartographies of Time. (Click image for details)

This is where the wings of the hummingbird begin to flutter: The real tipping point in accuracy, Johnson points out in a twist, “would emerge not from the calendar but from the map” — which makes sense given our long history of using cartography to measure time. He explains:

This was the first great age of global navigation, after all. Inspired by Columbus, ships were sailing to the Far East and the newly discovered Americas, with vast fortunes awaiting those who navigated the oceans successfully. (And almost certain death awaiting those who got lost.) But sailors lacked any way to determine longitude at sea. Latitude you could gauge just by looking up at the sky. But before modern navigation technology, the only way to figure out a ship’s longitude involved two clocks. One clock was set to the exact time of your origin point (assuming you knew the longitude of that location). The other clock recorded the current time at your location at sea. The difference between the two times told you your longitudinal position: every four minutes of difference translated to one degree of longitude, or sixty-eight miles at the equator.

In clear weather, you could easily reset the ship clock through accurate readings of the sun’s position. The problem was the home-port clock. With timekeeping technology losing or gaining up to twenty minutes a day, it was practically useless on day two of the journey.

This was an era when European royalty offered handsome bounties for specific innovations — the then-version of venture capital — incentivizing such scientific breakthroughs as Maria Mitchell’s comet discoveries and Johannes Hevelius’s star catalog. As the need to solve the navigation problem grew in urgency, the rewards offered for a solution grew in magnitude — and this was what resurfaced Galileo’s teenage vision for “equal time” all those years later. Johnson describes Galileo’s journey as a superb example of the “slow churn” of creativity, the value of cross-pollinating disciplines, and the importance of playing “the long game”:

[Galileo's] astronomical observations had suggested that the regular eclipses of Jupiter’s moons might be useful for navigators keeping time at sea, but the method he devised was too complicated (and not as accurate as he had hoped). And so he returned, one last time, to the pendulum.

Fifty-eight years in the making, his slow hunch about the pendulum’s “magical property” had finally begun to take shape. The idea lay at the intersection point of multiple disciplines and interests: Galileo’s memory of the altar lamp, his studies of motion and the moons of Jupiter, the rise of a global shipping industry, and its new demand for clocks that would be accurate to the second. Physics, astronomy, maritime navigation, and the daydreams of a college student: all these different strains converged in Galileo’s mind. Aided by his son, he began drawing up plans for the first pendulum clock.

There is something so poetic about Galileo inventing split-second time for the public on a private scale of decades.

Over the century that followed, the pendulum clock, a hundred times more accurate than any preceding technology, became a staple of European life and forever changed our relationship with time. But the hummingbird’s wings continued to flap — accurate timekeeping became the imperceptible heartbeat beneath all technology of the Industrial Revolution, from scheduling the division of labor in factories to keeping steam-powered locomotives running on time. It was the invisible hand of the clock that first moved the market — a move toward unanticipated innovations in other fields. Without clocks, Johnson argues, the Industrial Revolution may have never taken off — or “at the very least, have taken much longer to reach escape velocity.” He explains:

Accurate clocks, thanks to their unrivaled ability to determine longitude at sea, greatly reduced the risks of global shipping networks, which gave the first industrialists a constant supply of raw materials and access to overseas markets. In the late 1600s and early 1700s, the most reliable watches in the world were manufactured in England, which created a pool of expertise with fine-tool manufacture that would prove to be incredibly handy when the demands of industrial innovation arrived, just as the glassmaking expertise producing spectacles opened the door for telescopes and microscopes. The watchmakers were the advance guard of what would become industrial engineering.

But the most radical innovation of clock time was the emergence of the new working day. Up until that point, people divided their days not into modular abstract units — after all, what is an hour? — but into a fluid series of activities:

Instead of fifteen minutes, time was described as how long it would take to milk the cow or nail soles to a new pair of shoes. Instead of being paid by the hour, craftsmen were conventionally paid by the piece produced — what was commonly called “taken-work” — and their daily schedules were almost comically unregulated.

Rather, they were self-regulated by shifting factors like the worker’s health or mood, the weather, and the available daylight during that particular season. The emergence of factories demanded a reliable, predictable industrial workforce, which in turn called for fundamentally reframing the human perception of time. In one particularly pause-giving parenthetical aside, Johnson writes:

The lovely double entendre of “punching the clock” would have been meaningless to anyone born before 1700.

Workers punching the time clock at the Rouge Plant of the Ford Motor Company

And yet, as with most innovations, the industrialization of time came with a dark side — one Bertrand Russell so eloquently lamented in the 1920s when he asked: “What will be the good of the conquest of leisure and health, if no one remembers how to use them?” Johnson writes:

The natural rhythms of tasks and leisure had to be forcibly replaced with an abstract grid. When you spend your whole life inside that grid, it seems like second nature, but when you are experiencing it for the first time, as the laborers of industrial England did in the second half of the eighteenth century, it arrives as a shock to the system. Timepieces were not just tools to help you coordinate the day’s events, but something more ominous: the “deadly statistical clock,” in Dickens’s Hard Times, “which measured every second with a beat like a rap upon a coffin lid.”

[...]

To be a Romantic at the turn of the nineteenth century was in part to break from the growing tyranny of clock time: to sleep late, ramble aimlessly through the city, refuse to live by the “statistical clocks” that governed economic life… The time discipline of the pendulum clock took the informal flow of experience and nailed it to a mathematical grid. If time is a river, the pendulum clock turned it into a canal of evenly spaced locks, engineered for the rhythms of industry.

Johnson goes on to trace the hummingbird flutterings to the emergence of pocket watches, the democratization of time through the implementation of Standard Time, and the invention of the first quartz clock in 1928, which boasted the unprecedented accuracy of losing or gaining only one thousandth of a second per day. He observes the most notable feature of these leaps and bounds:

One of the strangest properties of the measurement of time is that it doesn’t belong neatly to a single scientific discipline. In fact, each leap forward in our ability to measure time has involved a handoff from one discipline to another. The shift from sundials to pendulum clocks relied on a shift from astronomy to dynamics, the physics of motion. The next revolution in time would depend on electromechanics. With each revolution, though, the general pattern remained the same: scientists discover some natural phenomenon that displays the propensity for keeping “equal time” that Galileo had observed in the altar lamps, and before long a wave of inventors and engineers begin using that new tempo to synchronize their devices.

But the most groundbreaking effect of the quartz clock — the most unpredictable manifestation of the hummingbird effect in the story of time — was that it gave rise to modern computing and the Information Age. Johnson writes:

Computer chips are masters of time discipline… Instead of thousands of operations per minute, the microprocessor is executing billions of calculations per second, while shuffling information in and out of other microchips on the circuit board. Those operations are all coordinated by a master clock, now almost without exception made of quartz… A modern computer is the assemblage of many different technologies and modes of knowledge: the symbolic logic of programming languages, the electrical engineering of the circuit board, the visual language of interface design. But without the microsecond accuracy of a quartz clock, modern computers would be useless.

Theodor Nelson's pioneering 1974 book 'Computer Lib | Dream Machines,' an exploration of the creative potential of computer networks, from '100 Ideas that Changed the Web' (Click image for more)

But as is often the case given the “thoroughly conscious ignorance” by which science progresses, new frontiers of knowledge only exposed what is yet to be reached. With the invention of the quartz clock also came the realization that the length of the day wasn’t as reliable as previously thought and the earth’s rotation wasn’t the most accurate tool for reaching Galileo’s measurement ideal of “equal time.” As Johnson puts it, “quartz let us ‘see’ that the seemingly equal times of a solar day weren’t nearly as equal as we had assumed” — the fact that a block of vibrating sand did a better job of keeping time than the sun and the earth, celebrated for centuries as the ultimate timekeepers, became the ultimate “deathblow to the pre-Copernican universe.”

What accurate timekeeping needed, ever since Galileo’s contemplation of the pendulum, was something that oscillated in the most consistent rhythm possible — and that’s what Niels Bohr and Werner Heisenberg’s discovery of the atom in the beginning of the twentieth century finally provided. With its rhythmically spinning electrons, the smallest chemical unit became the greatest and most consistent oscillator ever known. When the first atomic clocks were built in the 1950s, they introduced a groundbreaking standard of accuracy, measuring time down to the nanosecond, thousandfold better than the quartz clock’s microseconds.

Half a century later, this unprecedented precision is something we’ve come to take for granted — and yet it continues to underpin our lives with a layer of imperceptible magic. In one example, Johnson brings us full-circle to the relationship between timekeeping and map navigation where Galileo began:

Every time you glance down at your smartphone to check your location, you are unwittingly consulting a network of twenty-four atomic clocks housed in satellites in low-earth orbit above you. Those satellites are sending out the most elemental of signals, again and again, in perpetuity: the time is 11:48:25.084738 . . . the time is 11:48:25.084739. . . . When your phone tries to figure out its location, it pulls down at least three of these time stamps from satellites, each reporting a slightly different time thanks to the duration it takes the signal to travel from satellite to the GPS receiver in your hand. A satellite reporting a later time is closer than one reporting an earlier time. Since the satellites have perfectly predictable locations, the phone can calculate its exact position by triangulating among the three different time stamps. Like the naval navigators of the eighteenth century, GPS determines your location by comparing clocks. This is in fact one of the recurring stories of the history of the clock: each new advance in timekeeping enables a corresponding advance in our mastery of geography — from ships, to railroads, to air traffic, to GPS. It’s an idea that Einstein would have appreciated: measuring time turns out to be key to measuring space.

Therein lies the remarkable power and reach of the hummingbird effect, which Johnson condenses into an elegant concluding reflection:

Embedded in your ability to tell the time is the understanding of how electrons circulate within cesium atoms; the knowledge of how to send microwave signals from satellites and how to measure the exact speed with which they travel; the ability to position satellites in reliable orbits above the earth, and of course the actual rocket science needed to get them off the ground; the ability to trigger steady vibrations in a block of silicon dioxide — not to mention all the advances in computation and microelectronics and network science necessary to process and represent that information on your phone. You don’t need to know any of these things to tell the time now, but that’s the way progress works: the more we build up these vast repositories of scientific and technological understanding, the more we conceal them. Your mind is silently assisted by all that knowledge each time you check your phone to see what time it is, but the knowledge itself is hidden from view. That is a great convenience, of course, but it can obscure just how far we’ve come since Galileo’s altar-lamp daydreams in the Duomo of Pisa.

But perhaps the strangest thing about time is how each leap of innovation further polarized the scales on which it played out. As in the case of Galileo, who took six decades to master the minute, the same breakthroughs that gave atomic time its trailblazing accuracy also gave us radiation and radiometric dating, which was essential in debunking the biblical myth and proving that earth’s age was in the billions, not thousands, of years.

5,068-year-old bristlecone pine from Rachel Sussman's 'The Oldest Living Things in the World' (Click image for more)

Pointing to the Long Now Foundation’s quest to bury a clock that ticks once every 10,000 years beneath some of the oldest living pines in the world — an effort to extract us from the toxic grip of short-termism and, in the words of Long Now founder Kevin Kelly, nudge us to think about “generational-scale questions and projects” — Johnson ends with a wonderfully poetic reflection:

This is the strange paradox of time in the atomic age: we live in ever shorter increments, guided by clocks that tick invisibly with immaculate precision; we have short attention spans and have surrendered our natural rhythms to the abstract grid of clock time. And yet simultaneously, we have the capacity to imagine and record histories that are thousands or millions of years old, to trace chains of cause and effect that span dozens of generations. We can wonder what time it is and glance down at our phone and get an answer that is accurate to the split-second, but we can also appreciate that the answer was, in a sense, five hundred years in the making: from Galileo’s altar lamp to Niels Bohr’s cesium, from the chronometer to Sputnik. Compared to an ordinary human being from Galileo’s age, our time horizons have expanded in both directions: from the microsecond to the millennium.

In the remainder of How We Got to Now, a remarkable and perspective-shifting masterwork in its entirety, Johnson goes on to examine with equal dimension and rigor the workings of the hummingbird effect through the invention and evolution of such concepts as sound, light, glass, sanitation, and cooling.

For more on the mysteries of time, see these seven revelatory perspectives for a variety of fields, then revisit the curious psychology of why time slows down when you’re afraid, speeds up as you age, and gets warped while you’re on vacation.

Donating = Loving

Bringing you (ad-free) Brain Pickings takes hundreds of hours each month. If you find any joy and stimulation here, please consider becoming a Supporting Member with a recurring monthly donation of your choosing, between a cup of tea and a good dinner:





You can also become a one-time patron with a single donation in any amount:





Brain Pickings has a free weekly newsletter. It comes out on Sundays and offers the week’s best articles. Here’s what to expect. Like? Sign up.

Mister Horizontal & Miss Vertical: A Minimalist Picture-Book about How We Become Who We Are

By:

A brilliant conceptual graphic story about how we get our stripes of character and identity.

It is said that “who we are and who we become depends, in part, on whom we love.” But it depends perhaps even more on who loved each other before they came to love us — parenting shapes not only our psychological constitution, from our capacity for fertile solitude to our relationship with achievement, but perhaps most palpably our physical. Genetics bestows its blessings and curses upon us with more uncompromising despotism than any of the other cards we’re dealt in life.

How parents shape our own becoming is the premise, explored with remarkable subtlety and ingenuity, behind Mister Horizontal & Miss Vertical (public library) by French writer Noémie Révah and Italian illustrator Olimpia Zagnoli — a conceptual, minimalist, maximally delightful graphic book that calls to mind Norton Juster’s vintage classic The Dot and the Line in its geometric metaphors for temperament, yet is completely original in both substance and style.

It is also a beautiful celebration of art and science — the idea was inspired by French poet and photographer René Maltête’s iconic image of a boardwalk-strolling family’s visual metaphor for genetics:

We meet Mister Horizontal, who “loves everything that glides” and “a warm soak in a big bathtub” and “walking in the desert, with sand as far as the eye can see.”

We meet Miss Vertical, who loves “looping through the air” and “is crazy about rockets” and “can often be found on staircases.”

Zagnoli — who also illustrated a recent exquisite edition of The Wonderful Wizard of Oz — uses flat primary colors to bring bewitching dimension to Révah’s words.

After listing all of Mister Horizontal and Miss Vertical’s varied likes, the final pages ask:

Now what do you think…

…their child would love?

On a subtler level, the book is also a reminder that we are the combinatorial product not only of our parents but of what William Gibson so memorably called our “personal micro-culture” — that we become who we are in large part based on whom we surround ourselves with.

Mister Horizontal & Miss Vertical is an immeasurable delight to have and to hold. It comes from the wonderful Brooklyn-based indie picture-book publisher Enchanted Lion Books, an unending source of treasures like the immeasurably tender The Lion and the Bird, the lyrical Fox’s Garden, the vintage gem Little Boy Brown, Mark Twain’s Advice to Little Girls, and the imaginative geometric allegory Wednesday.

For a very different perspective on the metaphorical geometry of parenting, see Andrew Solomon on “horizontal” vs. “vertical” identity.

Illustrations courtesy of Olimpia Zagnoli / Enchanted Lion Books; photographs my own

Donating = Loving

Bringing you (ad-free) Brain Pickings takes hundreds of hours each month. If you find any joy and stimulation here, please consider becoming a Supporting Member with a recurring monthly donation of your choosing, between a cup of tea and a good dinner:





You can also become a one-time patron with a single donation in any amount:





Brain Pickings has a free weekly newsletter. It comes out on Sundays and offers the week’s best articles. Here’s what to expect. Like? Sign up.

Happy Birthday, John Dewey: On War, the Future of Pacifism, and Our Individual Role in Peace

By:

“The present task of the constructive pacifist is to call attention away from the catchwords which so easily in wartime become the substitute for both facts and ideas back to realities.”

Philosopher, psychologist, and education reformer John Dewey (October 20, 1859–June 1, 1952) is one of the most influential minds of the twentieth century. His enduring insight on the true purpose of education and the art of reflection and fruitful curiosity resonates today with growing relevance amid our struggle to cultivate wisdom in the age of information. But nowhere was Dewey more prescient than in his reflections on conflict, war, and what is required of us if we are to live up to our hopes for a peaceful world — reflections urgently relevant today, as we face a swelling tide of violence along the vast spectrum from bullying to beheadings.

On July 28, 1917 — exactly 67 years before I was born, and exactly three years after the start of World War I — The New Republic published a poignant piece by Dewey titled “The Future of Pacifism.” The essay is now included in Insurrections of the Mind: 100 Years of Politics and Culture in America (public library) — that fantastic “intellectual biography” of contemporary thought marking the 100th anniversary of The New Republic, which also gave us George Orwell on the four questions a great writer must ask herself. Dewey’s perceptive insight may well have been written about modern attitudes toward war — particularly America’s — and his impassioned case for peace reminds us that conflict is not merely something inflicted between governments but something in which we all, as individuals, are implicit in the small, seemingly imperceptible choices we make daily, the macro-beliefs we subscribe to in our private lives and the micro-actions we take in public.

He writes:

There is no paradox in the fact that the American people is profoundly pacifist and yet highly impatient of the present activities of many professed or professional pacifists.

He considers “the failure of the pacifist propaganda to determine finally the course of a nation which was converted to pacifism in advance”:

It takes two to make peace as well as to make war; or, as the present situation abundantly testifies, a much larger number than two.

Lamenting the misguided belief that that pacifism is merely a form of “futile gesturing,” Dewey admonishes against the prevalent perception that those who don’t support the war must be pro-enemy at heart. (Nearly a century later, a certain American president would repeatedly suggest that not supporting the war in Iraq — a war his administration started — was not only pro-enemy but also anti-American.) Dewey points to the pioneering American social worker, peace activist, and suffragist Jane Addams as the finest example of doing the pacifist position justice:

She earnestly protests against the idea that the pacifist position was negative or laissez-faire. She holds that the popular impression that pacifism meant abstinence and just keeping out of trouble is wrong; that it stood for a positive international polity in which this country should be the leader of the nations of the world “into a wider life of coordinated activity”; she insists that the growth of nations under modern conditions involves of necessity international complications which admit “of adequate treatment only through an international agency not yet created.” In short, the pacifists “urge upon the United States not indifference to moral issues and to the fate of liberty and democracy, but a strenuous endeavor to lead all nations of the earth into an organized international life.”

That intelligent pacifism stands for this end, and that the more intelligent among the pacifists, like Miss Addams, saw the situation in this fashion needs not be doubted.

And yet Dewey, never one to oversimplify the complexity of things, is far from advocating for “the very elementary attitude that if no nation ever allowed itself to be drawn into war, no matter how great the provocation, wars would cease to be.” Such preventative methods, he argues, are a matter of “treating symptoms and ignoring the disease.” He writes:

All this seems to concern the past of pacifism rather than its future. But it indicates, by elimination, what that future must be if it is to be a prosperous one. It lies in furthering whatever will bring into existence those new agencies of international control whose absence has made the efforts of pacifists idle gestures in the air… To go on protesting against war in general and this war in particular, to direct effort to stopping the war rather than to determining the terms upon which it shall be stopped, is to repeat the earlier tactics after their ineffectualness has been revealed. Failure to recognize the immense impetus to reorganization afforded by this war; failure to recognize the closeness and extent of true international combinations which it necessitates, is a stupidity equaled only by the militarist’s conception of war as a noble blessing in disguise.

To put an end to war and violence, Dewey argues, is not a matter of passive and theoretical protest. (One can only imagine what he would have made of today’s epidemic of online petitions.) It is a matter of acting, here and now:

I have little patience with those who are so anxious to save their influence for some important crisis that they never risk its use in any present emergency.

More than that, our individual responsibility is to use whatever “influence” we have — whatever reach, whatever voice, whatever share of the cultural conversation — in dispelling the propaganda of war:

The present task of the constructive pacifist is to call attention away from the catchwords which so easily in wartime become the substitute for both facts and ideas back to realities.

Illustration from 'The Ancient Book of Myth and War,' a Pixar side project. Click image for more.

This task of wedging a stick in the myth-making machinery of war propaganda is undoubtedly of greater — graver, even — importance today. But while the machinery of the media may have become manyfold more industrious since Dewey’s day and a merciless economic driver of commercial culture, it also pays to remember that in many ways, we — you and I and all the unique private individuals of whom the faceless public of citizenry is composed — are the media today. As Sally Kohn elegantly put it, “clicking is a public act” — what is being written determines what we read and what we come to believe, but today more than ever, what we read also very much determines what is being written. We are no longer the passive consumers of those catchwords of which Dewey admonishes but also their propagators, their perpetrators. Seen in this light, Dewey’s closing remarks ring with extraordinary poignancy:

One might, I think, go over, one by one, the phrases which are now urged to the front as defining the objects of war at the terms of peace and show that the interests of pacifism are bound up with securing the organs by which economic energies shall be articulated. We have an inherited political system which sits like a straitjacket on them since they came into being after the political system took on shape. These forces cannot be suppressed. They are the moving, the controlling, forces of the modern world. The question of peace or war is whether they are to continue to work furtively, blindly, and by those tricks of manipulation which have constituted the game of international diplomacy, or whether they are to be frankly recognized and the political system accommodated to them… Too many influential personages are pure romanticists. They are expressing ideals which no longer have anything to do with the facts. This stereotyped political romanticism gives the pacifists their chance for revenge. Their idealism has but to undergo a course in the severe realism of those economic forces which are actually shaping the associations and organizations of men, and the future is with them.

Complement with Einstein and Freud’s little-known correspondence on war, peace, and human nature, Tolstoy and Gandhi’s letters on violence and the truth of the human spirit, Mark Twain’s The War Prayer animated, and Nobel Peace Prize winner Jody Williams on how our choices shape our world.

The whole of Insurrections of the Mind is a trove of timeless, timely thought, featuring contributions from such celebrated minds as Zadie Smith, Virginia Woolf, Vladimir Nabokov, and Andrew Sullivan.

Donating = Loving

Bringing you (ad-free) Brain Pickings takes hundreds of hours each month. If you find any joy and stimulation here, please consider becoming a Supporting Member with a recurring monthly donation of your choosing, between a cup of tea and a good dinner:





You can also become a one-time patron with a single donation in any amount:





Brain Pickings has a free weekly newsletter. It comes out on Sundays and offers the week’s best articles. Here’s what to expect. Like? Sign up.