Brain Pickings

Posts Tagged ‘space’

31 OCTOBER, 2013

This Is Mars: Mesmerizing Ultra-High-Resolution NASA Photos at the Intersection of Art and Science

By:

Unprecedented look at the ever-enchanting Red Planet, at once more palpable and more mysterious than ever.

“Whether or not there is life on Mars now, there WILL be by the end of this century,” Arthur C. Clarke predicted in 1971 while contemplating humanity’s quest to conquer the Red Planet. “Whatever the reason you’re on Mars is, I’m glad you’re there. And I wish I was with you,” Carl Sagan said a quarter century later in his bittersweet message to future Mars explorers shortly before his death. Sagan, of course, has always been with us — especially as we fulfill, at least partially, Clarke’s prophecy: On March 10, 2006, we put a proxy of human life on, or at least very near, Mars — NASA’s Mars Reconnaissance Orbiter, with its powerful HiRISE telescope, arrived in the Red Planet’s orbit and began mapping its surface in unprecedented detail.

This Is Mars (public library) — a lavish visual atlas by French photographer, graphic designer and editor Xavier Barral, featuring 150 glorious ultra-high-resolution black-and-white images culled from the 30,000 photographs taken by NASA’s MRO, alongside essays by HiRISE telescope principal researcher Alfred S. McEwen, astrophysicist Francis Rocard, and geophysicist Nicolas Mangold — offers an unparalleled glimpse of those mesmerizing visions of otherworldly landscapes beamed back by the MRO in all their romantic granularity, making the ever-enthralling Red Planet feel at once more palpable and more mysterious than ever. At the intersection of art and science, these mesmerizing images belong somewhere between Berenice Abbot’s vintage science photography, the most enchanting aerial photography of Earth, and the NASA Art Project.

In a sentiment of beautiful symmetry to Eudora Welty’s meditation on place and fiction, Barral considers how these images simultaneously anchor us to a physical place and invite us into an ever-unfolding fantasy:

At the end of this voyage, I have gathered here the most endemic landscapes. They send us back to Earth, to the genesis of geological forms, and, at the same time, they upend our reference points: dunes that are made of black sand, ice that sublimates. These places and reliefs can be read as a series of hieroglyphs that take us back to our origins.

For a profound appreciation of how far we’ve come, complement This Is Mars with these beautiful black-and-white photos of vintage NASA training facilities and Carl Sagan, Arthur C. Clarke, and Ray Bradbury’s now-legendary 1971 conversation on Mars and the human mind.

Images courtesy of Aperture

Donating = Loving

Bringing you (ad-free) Brain Pickings takes hundreds of hours each month. If you find any joy and stimulation here, please consider becoming a Supporting Member with a recurring monthly donation of your choosing, between a cup of tea and a good dinner:





You can also become a one-time patron with a single donation in any amount:





Brain Pickings has a free weekly newsletter. It comes out on Sundays and offers the week’s best articles. Here’s what to expect. Like? Sign up.

18 OCTOBER, 2013

Irving Geis’s Pioneering Scientific Illustrations and Diagrams of Imaginary Flight Paths to Venus

By:

What the structure of DNA has to do with interplanetary travel and the cross-pollination of art and science.

Two generations after Ernst Haeckel’s seminal biological art, American artist Irving Geis (October 18, 1908–July 22, 1997) ushered in a new era of scientific illustration, his intricate hand-drawn work shedding light on such landmark twentieth-century discoveries as the structure of proteins and DNA. When he was only 29, he was commissioned by Fortune to create this stunning drawing of the circulatory system, which would come to influence a wealth of subsequent stunning vintage illustrations of the body and which marked his foray into scientific illustration:

Though best-remembered today as the illustrator behind the 1954 classic How to Lie with Statistics (which remains an essential piece of cultural literacy, all the more relevant in today’s data-driven everything), Geis found himself mesmerized by the world of science by the beginning of the 1960s — a world that had been catapulted into an electrifying renaissance with the discovery of DNA only a few years earlier. And so Geis, formally trained as an architect and thus as far removed from science as formal education makes possible, set out to illuminate the building blocks of life using his singular skill. Soon, he began working with Scientific American and illustrating everything from cellular biology to space travel.

Geis's early sketch of a hemoglobin molecule. (Courtesy of the Irving Geis Collection, Howard Hughes Medical Institute)

Geis's illustration of the hemoglobin tetramer. (Courtesy of the Irving Geis Collection, Howard Hughes Medical Institute)

Concept sketch for Geis's 1961 painting of sperm whale myoglobin, the very first protein structure solved by X-ray crystallography, for Scientific American.

Irving Geis with his near-complete 1961 painting of the structure of myoglobin. The heme portion of the protein, depicted in red, is still lacking the oxygen molecule at its center. (Courtesy of the Irving Geis Collection, Howard Hughes Medical Institute)

In 1960, a year before he created his now-legendary myoglobin illustration for Scientific American, Geis was commissioned by the magazine to draw a series of diagrams envisioning four alternative flight paths to Venus. An article titled “Interplanetary Navigation,” premised on the idea that space flight between the planets should be a reality “within a year or two,” imagined how an earth-bound navigator would go about bringing a vehicle loaded with scientific instruments to the alluring second planet from the sun, which Scientific American deemed “the planet most likely to be visited first by an interplanetary vehicle.” (They were, of course, wrong — it wasn’t Venus, and it took another ten years to realize the interplanetary dream with Mars.)

Geis’s first task was to revise our conventional models of the cosmos with a third dimension in mind, because treating the solar system as two-dimensional “could cause a vehicle to miss its objective by a thousand miles.” So Geis took the standard two-dimensional diagram…

…and gave it a third dimension, drawing Earth’s orbit on one transparent sheet of plastic and Venus’s on another, then mounting the two sheets in a glass plate and angling them at the approximate angle at which the two planets’ orbital planes intersect each other:

Geis then inspected his three-dimensional model and decided on the best angle at which to translate it into a two-dimensional diagram. The resulting four diagrams depicted the four possible paths to Venus:

A flight path wholly in the plane of earth's orbit which is timed to make rendezvous with Venus when the planet crosses the earth's orbital plane.

A flight path wholly in the plane of Venus, with the launching of the vehicle timed at a moment when the earth crosses Venus's orbital plane.

A flight path started in the orbital plane of the earth and deflected in the orbital plane of Venus by a rocket thrust fired on a radio command from earth.

A flight path projected on a plane (hatched area) that intersects the orbital planes of the two planets, with the vehicle flying out of the earth's orbital plane and into the orbital plane of Venus.

Complement Geis’s work with this retrospective of 2,000 years of scientific images and a look at the history of medical illustration.

Donating = Loving

Bringing you (ad-free) Brain Pickings takes hundreds of hours each month. If you find any joy and stimulation here, please consider becoming a Supporting Member with a recurring monthly donation of your choosing, between a cup of tea and a good dinner:





You can also become a one-time patron with a single donation in any amount:





Brain Pickings has a free weekly newsletter. It comes out on Sundays and offers the week’s best articles. Here’s what to expect. Like? Sign up.

04 OCTOBER, 2013

How Much a Planet Costs: Astronomy, Economics, and the Trouble with Pricing the Priceless

By:

“In our lives we all in some way contribute to this greater choice, either drawing our collective future down to Earth or thrusting it out closer to the stars.”

“It’s part of the nature of man to start with romance and build to a reality,” Ray Bradbury poignantly observed in his seminal 1971 conversation with Carl Sagan and Arthur C. Clarke about space exploration. Indeed, much like so many of Bradbury’s romantic predictions eventually became reality, the fictions of science have always extended into visions of the future, among the most persistent of which is that of other habitable worlds onto which humanity can project itself. In Five Billion Years of Solitude: The Search for Life Among the Stars (public library), science writer Lee Billings explores the possibilities of building that romance into a reality. The title refers to the projected longevity of life on earth — life that will be extinguished once the Sun burns out. Billings sets the backdrop:

Life emerged here shortly after the planet itself formed some four and a half billion years ago, and current estimates suggest our world has a good half billion years left until its present biosphere of diverse, complex multicellular life begins an irreversible slide back to microbial simplicity. In all this time, Earth has produced no other beings quite like us, nothing else that so firmly holds the fate of the planet in its hands and possesses the power to shape nature to its whim. We have learned to break free of Earth’s gravitational chains, just as our ancient ancestors learned to leave the sea. We’ve built machines to journey to the Moon, travel the breadth of the solar system, or gaze to the edge of creation. We’ve built others that can gradually cook the planet with greenhouse gases, or rapidly scorch it with thermonuclear fire, bringing a premature end to the world as we know it. There is no guarantee we will use our powers to save ourselves or our slowly dying world and little hope that, if we fail, the Earth could rekindle some new technological civilization in our wake of devastation.

'Moonwalk 1' by Andy Warhol (1987) from the NASA Art Project. Click image for more.

This longview choice of life and death, he argues, falls somewhere between science and spirituality, a new kind of scientific humanism to which the people Billings profiles — from evolutionary climatologists to futuristic cartographers to astronomers in search of extraterrestrial life — have dedicated their lives, driven by the shared belief that “in the fullness of planetary time any human future can only be found far beyond the Earth.” Billings puts it beautifully:

As precious as the Earth is, we can either embrace its solitude and the oblivion that waits at world’s end, or pursue salvation beyond this planetary cradle, somewhere far away above the sky. In our lives we all in some way contribute to this greater choice, either drawing our collective future down to Earth or thrusting it out closer to the stars.

[…]

I won’t pretend to know what our collective choice will be, how exactly we would embark on such an audacious adventure, or what we would ultimately find out there. I am content to merely have faith that we do, in fact, have a choice. Similarly, I can’t suggest that we simply ignore all of our planet’s pressing problems by dreaming of escape to the stars. We must protect and cherish the Earth, and each other, for we may never find any other worlds or beings as welcoming. Even if we did, we as yet have no viable way of traveling to them. Here, now, on this lonely planet, is where all our possible futures must begin, and where I pray they will not end.

Illustration from 'Outer Space Humor' (1963). Click image for more.

One of the most fascinating scientific romantics Billings spotlights is the astrophysicist Greg Laughlin, a 44-year-old professor at UC Santa Cruz. In 2009, shortly after NASA launched its Kepler spacecraft on a mission to hunt for Earth-like planets elsewhere in the cosmos, Laughlin devised “a strange, half-whimsical equation” to calculate the approximate value of such candidate planets and gauge whether they were worthy of scientific investment beyond the expected media hype such discoveries would inevitably produce. Using a number of variables, from a planet’s temperature and mass to the age and type of its star, the equation promised to yield a crude dollar valuation of the respective world. Billings breaks down the math:

Small, rocky worlds in clement orbits around middle-aged, middle-of-the-road stars similar to the Sun merited the highest values, as those planets presumably offered the best chance for harboring complex biospheres that could eventually be detected by future space telescopes. For a planet to be worthy of wide attention, Laughlin opined, it would need to at least break the million-dollar mark. Laughlin drew his economic baselines from simple math, dividing Kepler’s federally funded $600 million price tag by 100, a conservative estimate of how many terrestrial planets the space telescope would discover during its lifetime. If such planets could be considered commodities, the math suggested that the 2009 market price, as determined by U.S. taxpayers, could be set at $6 million per world—a value that could drop over time if small rocky planets began to overflow astronomers’ coffers. If, however, Kepler found a terrestrial world in the middle of a Sun-like star’s habitable zone, Laughlin’s test runs suggested such a planet’s value could exceed $30 million in his equation.

But most inventive of all was that Laughlin extended the formula not only to planets, but also to their home stars — which meant that, in theory, the calculations could be applied to the planets of our very own solar system, measuring their value not in dollars but in photons:

Photons, not dollars, are a planet hunter’s fundamental currency, as they are what allow a planet to be not only detected but also subsequently characterized. Generally speaking, the more photons astronomers can gather from an exoplanetary system, the more they can learn about it. Stars and planets nearer to our solar system are brighter in our skies due to their close proximity, and hence more valuable, providing floods of useful photons where more distant objects would only offer trickles. This facet was why so many of Kepler’s small planets would struggle to reach a valuation of even a million dollars: the Kepler field stars were far away, and thus very dim. The brightest star visible in the solar system by many orders of magnitude is, of course, the Sun, which has the capacity to send local planetary valuations into truly astronomical territory.

If Laughlin based his calculations on the early-twentieth-century belief that Venus’s clouds would reflect the Sun and shield the planet from the scorching solar flux, its scientific value would swell to a whopping $1,500 trillion — that’s one and a half quadrillion dollars. But if Venus’s actual runaway-greenhouse surface temperature were used for the calculation, the planet would be worth a trillionth of one cent. (This gaping disparity of valuations, Laughlin asserted, is akin to the dot-com bubble of the 1990s, a case of companies translating investors’ blind enthusiasm into exorbitant valuations that eventually caused the bubble to burst once their true value was revealed.) When Laughlin applied his equation to our Earth, he arrived at a value of roughly five quadrillion dollars, or about 100 times the global gross domestic product — “a handy approximation of the economic value of humanity’s accumulated technological infrastructure.”

But he didn’t stop there — he also ran the equation for a habitable candidate from Alpha Centauri system, which he valued at $6.5 billion. As Billings wryly remarks, that’s approximately the amount astronomers estimate would be necessary to build the kind of space telescope capable of detecting signs of life on such a world. The most intriguing dynamic, however, is that just like we confer value on art, we confer value on the world itself — the star to such a world would become increasingly brighter if we were to actually voyaged there, eventually becoming a new Sun to our new home. Laughlin tells Billings:

In going there, you have this ability to intrinsically increase value. And that’s an exciting thing because it ultimately provides a profit motive for perhaps going out and making a go of it with these planets. This is saying that something that is several billion dollars on Earth could be, if you go there, a quadrillion-dollar payoff.

Of course, Billings is careful to admonish against the lazy shorthand mainstream media tend to use in headlining such news — it is equal parts lazy and foolish to put an actual price sticker on a planet, especially on our Earth, which is home to other worlds of immeasurable complexity and contains “the aggregate of our joy and suffering, thousands of confident religions, ideologies, and economic doctrines, every hunter and forager, every hero and coward, every creator and destroyer of civilization, every king and peasant, every young couple in love…”

Illustration from 'The First Book of Space Travel' (1953) by Jeanne Bendick. Click image for more.

Five Billion Years of Solitude goes on to explore the thrilling and terrifying repercussions of what it means to live as “creatures with the intellectual capacity to discover their genesis and the technological capability to design their fate,” and to remind us, above all, that we do have a choice in that design. Complement it with Isaac Asimov’s witty 1969 letter on why we should invest in space exploration.

Donating = Loving

Bringing you (ad-free) Brain Pickings takes hundreds of hours each month. If you find any joy and stimulation here, please consider becoming a Supporting Member with a recurring monthly donation of your choosing, between a cup of tea and a good dinner:





You can also become a one-time patron with a single donation in any amount:





Brain Pickings has a free weekly newsletter. It comes out on Sundays and offers the week’s best articles. Here’s what to expect. Like? Sign up.