Brain Pickings

Posts Tagged ‘technology’

24 JUNE, 2013

The Surprising History of the Pencil

By:

What medieval smuggling has to do with the atomic structure of carbon.

Having previously explored such mysteries as who invented writing and how sounds became shapes, it’s time to turn to something much less mysterious, a seemingly mundane yet enormously influential tool of human communication: the humble pencil.

“Take a pencil to write with on aeroplanes. Pens leak,” states the first of Margaret Atwood’s 10 rules of writing. “But if the pencil breaks, you can’t sharpen it on the plane, because you can’t take knives with you. Therefore: take two pencils.” But even though the pencil has fueled such diverse feats of creative culture as celebrated artists’ sketchbooks, Marilyn Monroe’s soulful unpublished poems, Lisa Congdon’s stunning portraits, and David Byrne’s diagrams of the human condition, it has only been around for a little over two hundred years. In the altogether fascinating 100 Essential Things You Didn’t Know You Didn’t Know: Math Explains Your World (public library), John D. Barrow tells the story of this underrated technological marvel:

The modern pencil was invented in 1795 by Nicholas-Jacques Conte, a scientist serving in the army of Napoleon Bonaparte. The magic material that was so appropriate for the purpose was the form of pure carbon that we call graphite. It was first discovered in Europe, in Bavaria at the start of the fifteenth century; although the Aztecs had used it as a marker several hundred years earlier. Initially it was believed to be a form of lead and was called ‘plumbago’ or black lead (hence the ‘plumbers’ who mend our lead water-carrying pipes), a misnomer that still echoes in our talk of pencil ‘leads’. It was called graphite only in 1789, using the Greek word ‘graphein’ meaning ‘to write’. Pencil is an older word, derived from the Latin ‘pencillus’, meaning ‘little tail’, to describe the small ink brushes used for writing in the Middle Ages.

Nicholas-Jacques Conte

But the history of the pencil, like that of many seminal innovations, has a dark side:

The purest deposits of lump graphite were found in Borrowdale near Keswick [England] in the Lake District in 1564 and spawned quite a smuggling industry and associated black economy in the area. During the nineteenth century a major pencil manufacturing industry developed around Keswick in order to exploit the high quality of the graphite.

And yet the pencil industry blossomed:

The first factory opened in 1832, and the Cumberland Pencil Company has just celebrated its 175th anniversary; although the local mines have long been closed and supplies of the graphite used now come from Sri Lanka and other far away places. Cumberland pencils were those of the highest quality because the graphite used shed no dust and marked the paper very well.

The oldest pencil in the world, found in timbered house built in 1630. (Image: Faber-Castell)

Plain as it appears, however, the pencil has evolved significantly since its invention:

Conte’s original process for manufacturing pencils involved roasting a mixture of water, clay and graphite in a kiln at 1,900 degrees Fahrenheit before encasing the resulting soft solid in a wooden surround. The shape of that surround can be square, polygonal or round, depending on the pencil’s intended use — carpenters don’t want round pencils that are going to roll off the workbench. The hardness or softness of the final pencil ‘lead’ can be determined by adjusting the relative fractions of clay and graphite in the roasting mixture. Commercial pencil manufacturers typically market 20 grades of pencil, from the softest, 9B, to the hardest 9H, with the most popular intermediate value, HB, lying midway between H and B. ‘H’ means hard and ‘B’ means black. The higher the B number, the more graphite gets left on the paper. There is also an ‘F’, or Fine point, which is a hard pencil for writing rather than drawing.

Barrow offers the science behind an oft-cited trivia factlet:

The strange thing about graphite is that it is a form of pure carbon that is one of the softest solids known, and one of the best lubricants because the six carbon atoms that link to form a ring can slide easily over adjacent rings. Yet, if the atomic structure is changed, there is another crystalline form of pure carbon, diamond, that is one of the hardest solids known.

For the mathematically-minded, Barrow offers a delightful curiosity-quencher:

An interesting question is to ask how long a straight line could be drawn with a typical HB pencil before the lead was exhausted. The thickness of graphite left on a sheet of paper by a soft 2B pencil is about 20 nanometers and a carbon atom has a diameter of 0.14 nanometers, so the pencil line is only about 143 atoms thick. The pencil lead is about 1 mm in radius and therefore ? square mm in area. If the length of the pencil is 15 cm, then the volume of graphite to be spread out on a straight line is 150? cubic mm. If we draw a line of thickness 20 nanometers and width 2 mm, then there will be enough lead to continue for a distance L = 150? / 4 X 10-7 mm = 1,178 kilometers.

100 Essential Things You Didn’t Know You Didn’t Know: Math Explains Your World goes on to explore such fascinating questions as the origami of the universe, what rugby has to do with relativity, how long things are likely to survive, and more.

Donating = Loving

Bringing you (ad-free) Brain Pickings takes hundreds of hours each month. If you find any joy and stimulation here, please consider becoming a Supporting Member with a recurring monthly donation of your choosing, between a cup of tea and a good dinner:





You can also become a one-time patron with a single donation in any amount:





Brain Pickings has a free weekly newsletter. It comes out on Sundays and offers the week’s best articles. Here’s what to expect. Like? Sign up.

03 JUNE, 2013

Space for Equality: NASA Joins the It Gets Better Project

By:

“It’s becoming the new normal — you’re being defined by your character and not by whom you love.”

When we lost pioneering astronaut Sally Ride in 2012, many knew that as she boarded the Space Shuttle Challenger in June of 1983, she became the first American woman in space and the nation’s youngest astronaut to ever launch into the cosmos. But few were aware that she was also America’s first lesbian astronaut in space — a quiet but powerful rebel of gender diversity on multiple levels in a field still dominated by rigid stereotypes and gender norms. At the time of her death, Ride had been with her partner, Tam O’Shaughnessy, for the past 27 years. And yet one can only imagine the pressures, both inward and outward, she had to withstand coming of age at a time of extreme orientation-based discrimination.

Hardly any movement has done more to alleviate the spectrum from crippling self-doubt to suicide that young queer people struggle with than the It Gets Better project, masterminded by Dan Savage and his husband of 18 years, Terry Miller. Since its conception in 2010, it has drawn thousands of brave people of various sexual orientations and gender identities, as well as a cohort of heterosexual supporters — from countless individuals to the staffers of organizations like Google, Apple and Etsy to the cast of popular TV shows like House and True Blood to President Obama himself — to face the camera and help struggling LGBTQ youth face themselves with dignity and inner peace. Thirty years after Ride boarded the Challenger, NASA joins the It Gets Better ranks with a heartening testament to the diversity of the LBGTQ community, with space agency staffers ranging from interns to managers, engineers to astronauts, and even NASA’s Chief of Staff.

It almost doesn’t matter anymore — it’s who I am; it’s one part of who I am and not everything that I am.

Complement with Dan Savage’s recently released and excellent American Savage: Insights, Slights, and Fights on Faith, Sex, Love, and Politics, discussed in brief here.

The Dish

Donating = Loving

Bringing you (ad-free) Brain Pickings takes hundreds of hours each month. If you find any joy and stimulation here, please consider becoming a Supporting Member with a recurring monthly donation of your choosing, between a cup of tea and a good dinner:





You can also become a one-time patron with a single donation in any amount:





Brain Pickings has a free weekly newsletter. It comes out on Sundays and offers the week’s best articles. Here’s what to expect. Like? Sign up.

17 MAY, 2013

Gorgeous Black-and-White Photos of Vintage NASA Facilities

By:

From the wind tunnels the made commercial aviation possible to the analog machines that preceded the computer, a visual history of the spirit of innovation presently unworthy of the government’s dollar.

Among the great joys of spending countless hours rummaging through archives is the occasional serendipitous discovery of something absolutely wonderful: Case in point, these gorgeous black-and-white photographs of vintage NASA (and NASA predecessor NACA) facilities, which I found semi-accidentally in NASA’s public domain image archive. Taken between the 1920s and 1950s, when the golden age of space travel was still a beautiful dream, decades before the peak of the Space Race, and more than half a century before the future of space exploration had sunk to the bottom of the governmental priorities barrel, these images exude the stark poeticism of Berenice Abbott’s science photographs and remind us, as Isaac Asimov did, of NASA’s enormous value right here on Earth.

NACA's first wind tunnel, located at Langley Field in Hampton, VA, was an open-circuit wind tunnel completed in 1920. Essentially a replica of the ten-year-old tunnel at the British National Physical Laboratory, it was a low-speed facility which involved the one-twentieth-scale models. Because tests showed that the models compared poorly with the actual aircraft by a factor of 20, a suggestion was made to construct a sealed airtight chamber in which air could be compressed to the same extent as the model being tested. The new tunnel, the Variable Density Tunnel was the first of its kind and has become a National Historic Landmark. (April 1, 1921)

Pressure tank of the Variable Density Tunnel at the Newport News Shipbuilding and Dry Dock Company, Hampton, VA. Photograph courtesy Northrop-Grumman Shipbuilding-Newport News (February 3, 1922). The tank was shipped by barge to NACA, now NASA Langley Research Center, in June 1922.

Workmen in the patternmakers' shop manufacture a wing skeleton for a Thomas-Morse MB-3 airplane for pressure distribution studies in flight. (June 1, 1922)

A Langley researcher ponders the future, in mid-1927, of the Sperry M-1 Messenger, the first full-scale airplane tested in the Propeller Research Tunnel. Standing in the exit cone is Elton W. Miller, Max M. Munk's successor as chief of aerodynamics. (1927)

16-foot-high speed wind tunnel downstream view through cooling tower section. (February 8, 1942)

Free-flight investigation of 1/4-scale dynamic model of XFV-1 in NACA Ames 40x80ft wind tunnel. (August 18, 1942)

Engine on Torque Stand at the Aircraft Engine Research Laboratory in Cleveland, Ohio, now known as the John H. Glenn Research Center at Lewis Field. Torque is the twisting motion produced by a spinning object. (April 15, 1944)

Detail view of Schlieren setup in the 1 x 3 Foot Supersonic Wind Tunnel. (October 26, 1945)

Boeing B-29 long range bomber model was tested for ditching characteristics in the Langley Tank No. 2 (Early 1946)

Looking down the throat of the world's largest tunnel, 40 by 80 feet, located at Ames Aeronautical Laboratory, Moffett Field, California. The camera is stationed in the tunnel's largest section, 173 feet wide by 132 feet high. Here at top speed the air, driven by six 40-foot fans, is moving about 35 to 40 miles per hour. The rapid contraction of the throat (or nozzle) speeds up this air flow to more than 250 miles per hour in the oval test section, which is 80 feet wide and 40 feet high. The tunnel encloses 900 tons of air, 40 tons of which rush through the throat per second at maximum speed. (1947)

Analog Computing Machine in the Fuel Systems Building. This is an early version of the modern computer. The device is located in the Engine Research Building at the Lewis Flight Propulsion Laboratory, now John H. Glenn Research Center, Cleveland Ohio. (September 28, 1949)

Guide vanes in the 19-foot Pressure Wind Tunnel at Langley Aeronautical Laboratory, National Advisory Committee for Aeronautics, form an ellipse 33 feet high and 47 feet wide. The 23 vanes force the air to turn corners smoothly as it rushes through the giant passages. If vanes were omitted, the air would pile up in dense masses along the outside curves, like water rounding a bend in a fast brook. Turbulent eddies would interfere with the wind tunnel tests, which require a steady flow of fast, smooth air. (March 15, 1950

24-foot-diameter swinging valve at various stages of opening and closing in the 10ft x 10ft Supersonic Wind Tunnel. (May 17, 1956)

A television camera is focused by NACA technician on a ramjet engine model through the schlieren optical windows of the 10 x 10 Foot Supersonic Wind Tunnel's test section. Closed-circuit television enables aeronautical research scientists to view the ramjet, used for propelling missiles, while the wind tunnel is operating at speeds from 1500 to 2500 mph. (8.570) The tests were performed at the Lewis Flight Propulsion Laboratory, now John H. Glenn Research Center. (April 21, 1957)

8ft x 6ft Supersonic Wind Tunnel Test-Section showing changes made in Stainless Steel walls with 17 inch inlet model installation. The model is the ACN Nozzle model used for aircraft engines. The Supersonic Wind Tunnel is located in the Lewis Flight Propulsion Laboratory, now John H. Glenn Research Center. (August 31, 1957)

The Gimbal Rig, formally known as the MASTIF of Multiple Axis Space Test Inertia Facility, was engineered to simulate the tumbling and rolling motions of a space capsule and train the Mercury astronauts to control roll, pitch and yaw by activating nitrogen jets, used as brakes and bring the vehicle back into control. This facility was built at the Lewis Research Center, now John H. Glenn Research Center at Lewis Field. (October 29, 1957)

Lockheed C-141 model in the Transonic Dynamics Tunnel (TDT). By the late 1940s, with the advent of relatively thin, flexible aircraft wings, the need was recognized for testing dynamically and elastically scaled models of aircraft. In 1954, NASA's predecessor agency, the National Advisory Committee on Aeronautics (NACA), began converting the Langley 19-foot Pressure Tunnel for dynamic testing of aircraft structures. The old circular test section was reduced to 16 x 16 feet, and slotted walls were added for transonic operation. The TDT was provided with special oscillator vanes upstream of the test section to create controlled gusty air to simulate aircraft response to gusts. A model support system was devised that freed the model to pitch and plunge as the wings started oscillating in response to the fluctuating airstream. The TDT was completed in 1959. It was the world's first aeroelastic testing tunnel. (November 16, 1962)

Alas, the names of the photographers — as is often the case with creators working on the government dollar — were not preserved. If you recognize any, get in touch and help credit them.

Donating = Loving

Bringing you (ad-free) Brain Pickings takes hundreds of hours each month. If you find any joy and stimulation here, please consider becoming a Supporting Member with a recurring monthly donation of your choosing, between a cup of tea and a good dinner:





You can also become a one-time patron with a single donation in any amount:





Brain Pickings has a free weekly newsletter. It comes out on Sundays and offers the week’s best articles. Here’s what to expect. Like? Sign up.